A Note on Quadratic Maps for Hilbert Space Operators
Authors
Abstract:
In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...
similar resources
Compact Operators on Hilbert Space
Among all linear operators on Hilbert spaces, the compact ones (defined below) are the simplest, and most imitate the more familiar linear algebra of finite-dimensional operator theory. In addition, these are of considerable practical value and importance. We prove a spectral theorem for self-adjoint operators with minimal fuss. Thus, we do not invoke broader discussions of properties of spectr...
full textHankel Operators on Hilbert Space
commonly known as Hilbert's matrix, determines a bounded linear operator on the Hilbert space of square summable complex sequences. Infinite matrices which possess a similar form to H, namely those that are 'one way infinite' and have identical entries in cross diagonals, are called Hankel matrices, and when these matrices determine bounded operators we have Hankel operators, the subject of thi...
full text*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
full textOn Commutators of Operators on Hilbert Space
1. In this note we first generalize a result of P. R. Halmos [3] concerning commutators of (bounded ) operators on Hubert space. Then we obtain some partial results on a problem of commutators in von Neumann algebras which is closely related to another problem raised by Halmos in [4]. Let 3C be any (infinite-dimensional) Hubert space, and let £(3C) denote the algebra of all bounded operators on...
full textA Morita Theorem for Algebras of Operators on Hilbert Space
We show that two operator algebras are strongly Morita equivalent (in the sense of Blecher, Muhly and Paulsen) if and only if their categories of operator modules are equivalent via completely contractive functors. Moreover, any such functor is completely isometrically isomorphic to the Haagerup tensor product (= interior tensor product) with a strong Morita equivalence bimodule. Date: Septembe...
full textReal-linear Operators on Quaternionic Hilbert Space
The main result is that any continuous real-linear operator A on a quaternionic Hubert space has a unique decomposition A=A0+iiAl + izAi+iiA3, where the A„ are continuous linear operators and (fi,f2,'3) is any right-handed orthonormal triad of vector quaternions. Other results concern the place of the colinear and complex-linear operators in this characterisation and the effect on the Av of a r...
full textMy Resources
Journal title
volume 3 issue 10
pages 31- 36
publication date 2017-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023